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Trust in AI, trust in public processes 

OUR OBJECTIVE

To enable trustworthy use of AI by public authorities and support effective oversight.

The use of AI tooling can facilitate the design and application of efficient and socially aware policies by governmental bodies, but 

involves the risk of disregarding trustworthiness as a priority, thus risking losing the trust of society towards the government. Guidelines 

for Trustworthy AI have been proposed, but require practical understanding from developers of AI systems in order to be adequately 

implemented.
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2) Data 

collection

3) Data 

preparation

5) Implementation 

and deployment

6) Evaluation, 

monitoring, 

optimization

4) Build and 

test model

1) Use case 

definition7) Interpretation and 

communication

AI life cycle components

The AI development 

cycle passes through 7 

stages. From project 

scoping (1-2), design and 

build phase (3-4) up to 

continuous improvement 

in production (5-6). 

The 7th stage is 

specifically added as 

interpretation and 

communication by 

operators is society-

dependent and can 

change over time.
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The European ethics guidelines on 

trustworthy AI state that it should be: 

• Lawful – respecting all applicable 

laws and regulations

• Ethical  - respecting ethical 

principles and values

• Robust – both from a technical 

perspective while taking into 

account its social environment 

These guidelines translate into 7 key 

requirements that AI systems should 

meet , the principles of trustworthy AI. 

Trustworthy AI principles:
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Thrust-

worthy AI

Societal & environmental 

well-being

Non-discrimination & 

fairness

Transparency

Privacy & Data 

Governance

Technical 

Robustness & Safety

Human agency & 

Oversight

Accountability



5 | SlideSalad.com | 2020

Begin with … Reproducibility 

Reproducibility serves as the foundation for the Trustworthy principles Robustness and Accountability. Its relevance 

is often underestimated and has not been thoroughly investigated in the context of AI, despite the crisis that it seems 

to face. 

Reproducibility of AI systems highly influences their performance and applicability in social context, since:

1. It is a prerequisite for technical robustness, and 

2. It is crucial in rendering systems verifiable and thus fit for criticism and improvement. 
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The importance of reproducibility

In ML

1. Validity
Proving the correctness of the models 

using the same processes and data.

3. Having a baseline
A reproducible baseline is required to 

increase the reliability of your claim of 

effectiveness or contribution to science.

2. Credibility
To be able to rely on the ML models and use 

them intensively in our daily lives, we                 

need to be able to replicate and 

explain them. 

4. Pattern vs randomness
The improvements of models should be 

based on identified patterns and not on 

random ‘lucky shots’.

1

3

2

4
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View 2

Reproducible outcomes for 

verification of their validity.

View 1

Reproducible set-up for 

replication.

What is reproducibility?

ReproducibilityReproducibility

Do you provide all 

information for 

someone else to 

recreate your work?

Are your outcomes 

robust to inherent 

randomness of 

Machine Learning? 

Are your conclusions 

contingent to your 

exact implementation?

e.g., The fact 

that a random 

seed is set and 

saved.

e.g., The 

(in)dependency 

of conclusions 

on a specific 

seed.
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The reproducible scale

A

soft
Z 

strict

Reproducibility

With various hardware, 

no original code available, 

different languages,

comparable AI methods,

the result is reproducible for 

another person

Reproducibility

With the same hardware, 

the original code, 

the same language,

the same AI methods,

the result is reproducible for 

another person.

There are various strictness levels of reproducibility for another person to get to the same 

results. All variations can occur in between. What is the reproducibility if different 

hardware is used?  What is the effect of coding in R versus in Python? What is the result 

of different library versions? How do random forest and gradient boost affect 

reproducibility? Depending on the need of the user, the strictness of reproducibility can be 

chosen.
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Reproducibility: Complementing views
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View 2: Robustness/Stability/Reliable 

REQUIRES VALIDATION IDEAL

NO GO REQUIRES TRUST

The use of the algorithm is accountable, as the settings and 

outcomes can be repeated such that previous execution can be 

corroborated.

However, the outcome may be dependent on the exact 

implementation of the code, more validation is needed before one 

considers the outcomes of the algorithm in process affecting society.

The algorithm is accountable as information for reproducibility for all 

stages in the AI life cycles is appropriately stored.

The outcomes are verifiable or are verified with different models 

and settings such that they can be interpreted with appropriate 

level of confidence.

Outcomes of the algorithm cannot be reproduced by any (3rd) party. 

Randomness in the algorithm or contingencies of the algorithm are 

ignored in the interpretation of the outcomes. Hence, application of the 

algorithm is in many real life processes ill-advised as the outcomes 

do not have a robust interpretation nor are they accountable.

Outcomes of the algorithm cannot be reproduced by 3rd parties due 

to omission of information on parameters and packages or privacy 

aspects of even the characteristics of the data.

The outcomes are presented to be verified by multiple approaches 

and classifiers, however due to the inability to exactly replicate 

the outcomes, the developer need be trusted.
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Importance of 

randomness
Due to memory and time constraints randomness is used in 

machine learning tasks. 

To calculate the gradient in optimizing the Machine Learning task 

often Stochastic Gradient Descent is used picking randomly a 

part of the data to update its parameter iteratively. The noise that 

is added during these updates can help in overcoming to get 

stuck in a  local minimum. The model may purposefully take 

random steps to seek a better state. 

Another example is the use of bagging (bootstrap aggregating) 

which trains multiple models on overlapping randomly selected 

subsets of data to increase accuracy and determine variance.
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TNO’s focus in the landscape

Trustworthy AI guidelines and handbooks

Technical principles 

of trustworthy AI

Juridical implications 

for implementation
Organizational 

implementations in processes

Technical OrganizationalJuridical

Break-down high level 

concepts into technical 

implementations of 

trustworthy AI including 

specific coding guidelines for 

developers.

Management

Projects

TILT handbook

EU ethics guidelines

and frameworks WP1

Focus of TNO’s 

handbook

V29 questionnaire

Existing 

frameworks/tools

In
-d

e
p
th

H
ig

h
 l
e
v
e
l



12 | SlideSalad.com | 2020

AI life cycle

3) Data pre-processing: data cleansing, instances selection and partitioning, feature 

tuning, representation transformation, feature extraction, feature selection, feature 

construction, coupling of datasets and data labelling. Starts with raw data and ends up with 

a ML ready dataset.

4) Build and Test model: model(s) selection, train and test split, testing and evaluating 

the model on pre-defined success criteria. 

5) Implementation and deployment: practical tests first in a sandbox environment, 

model adjustment and applying in process, document restrictions and conditions for use.

2) Data collection: define data sources, protocols to safely collect and store data and 

handle boundary conditions for collecting the data such as juridical implications.

6) Evaluation, monitoring optimization: define implementation strategy, evaluation on 

defined goal/impact, actions to improve, continues monitoring and improvement.

1) Use case definition: setting the goal and the necessity of the project, define envisioned 

impact, set the required assumptions for this goal, define end-user and define success 

criteria.

7) Interpretation and communication: define user interpretation and expected actions, 

evaluate universality of interpretation, monitor and act upon changes in actors/environment 

acting on outcome, adjust process accordingly. 

AI Life cycle 

components

This step includes: 
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Framework Reproducibility

Life cycle components

Use case Data collection Data preparation
Build and test 

model

Implementation 

and deployment

Evaluation, 

monitoring 

optimization

Interpretation 

and 

communication
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Definition

• Problem 

statement 

• Define goal and 

scope

• Define intended 

use

• Define data 

sources

• Procedure and 

boundaries of 

data collection

• From raw data to 

ML input

• Data cleaning 

and 

preprocessing

• Model selection

• Test procedures 

including train test 

split.

• Sandbox first

• Practical 

application

• Restrictions and 

conditions for use

• Evaluation with 

defined goal

• Actions to 

improve

• Continuous 

monitoring

• User 

interpretation and 

expected actions.

Problems 

sources

• What level and 

type of 

reproducibility is 

necessary? 

• Data size

• Computing power 

requirements

• Dynamic data

• Feature 

engineering

• Missing data

• Random sampling

• Parameter 

choices

• Inherent 

randomness

• Libraries

• Documentation by 

user
• Metrics

• Visualization

• Non-universal 

standardization 

Solutions

• Use our 

handbook to 

select your needs 

for your use case.

• Learning Curve

• Benchmark set

• Timestamps

• Recording of 

preliminary data 

sets.

• Documentation of 

seed.

• Version control.

• Automated 

testing

• Environment and 

docker files.

• Automated 

documentation.

• Checklist

• Dynamic 

dashboard.

• Benchmark

• Examples
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Build and test model: 

Problems / Sources Solutions

Train-test split

• A random allocation of each data point or subject into two separate sets 

is executed to split the data into a train or test set. This randomness may 

influence the results of the algorithm.

• In python, this can e.g. be performed by a function of the package 

scikit learn called: train_test_split.

• Setting and saving a seed to the train test split ensures that creation of the train 

and test is repeatable.

• In python, the package scikit learn often allows the random state to be 

given to the function.

• Cross validation is a more extensive version on a train-test split with multiple splits 

per execution such that the influence of the randomness becomes smaller. This 

increases the reproducibility w.r.t. View 2 of the results as it decreases the reliance 

of a specific seed. 

• Saving (and sharing) the index of the train and test splits (folds) increase the 

reproducibility of results w.r.t. a train-test split further. In this way, you can exactly 

recreate the splits irrespective of another random number generator and if 

applicable others may test the findings on the exact same data splits. 

Parameter 

choice

• Unknown parameter choices, i.e. missing records of the settings used in an 

algorithmic application, are a risk for reproducibility. 

• Default parameters in packages are an even larger risk for the 

reproducibility in terms of View 2. These are often unacknowledged and not 

recorded, while default parameters differ between (versions of) packages and 

programming languages.

• In python, the default number of splits in function 

StratifiedShuffleSplit of package scikit learn has changed over 

versions from 3 to 5. E.g. the solver for RandomForest in python 

has a default depth of 100 branches while the package for R has a 

default of 200 branches.

• Configuration files or scripts aid in the recording of the parameter settings applied 

in testing the model. This is in contrast to parameters being set somewhere in the 

collection of scripts that the eventual algorithm will consist of. 

• It is common practice to use .yml files for saving parameter choices and 

data paths for referencing all relevant directories.  

• Version control is in turn able to save the configuration files and as such the 

chosen parameters of each test. For this solution there is a distinction for the 

developer (elaborated here) and the user (elaborated in the deployment phase). 
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Build and test model
Problems / Sources Solutions

Inherent 

algorithmic 

randomness 

(non-

deterministic)  

• There are many reasons for algorithms to be non-deterministic, see slide 

19 for elaboration on inherent randomness in algorithms. Some specific 

origins of randomness in machine learning algorithms are listed here:

• Many models optimize weights such that they capture the targeted 

relation in the data. To acquire a starting point of the optimization, 

weights are often randomly initialized.

• Multiple features of Neural Networks use random sampling, one of 

them is the random selection in the application of dropout layers.

• For stochastic optimization to find (local) optima, random 

sampling is used. An example for which this holds is stochastic 

gradient descent.

• Randomness in random forest models. Each tree in the random 

forest selects random features on which the model is trained.

• Test automation: To gain the benefits from algorithmic randomness and limit the 

drawbacks, automatic testing of the algorithm for  e.g. a range of seeds may be 

performed.  

• Do the results for different seeds fall into an acceptable range?

• Are the conclusions the same for all most seeds?  

• Continuous integration: A step further in test automation is the use of continuous 

integration of testing during the building and testing of the model. Before any 

version of the model is approved or even any merge from branch to main is 

requested, automated testing can be integrated. As such, version updates and 

merge request are accompanied with a testing report.  

• Alternative solver, same results? In many applications, there are many options 

to solve the objective function, i.e. to optimize the classifier. To increase the 

reproducibility of outcomes w.r.t. View 2, it is advised to see the outcomes for 

multiple solvers with similar functionalities s.t. the dependency on one component 

is limited. 

• Statistical significance tests between results and benchmark take into account 

random noise in data and if applied correctly contribute to robustness of a model’s 

results.

Library 
• The use of libraries simplifies the use of AI and machine learning but often 

does not guarantee an 100% reproducibility. Libraries and the underlying 

functions change each version, including their dependencies to other libraries. 

• Environment, in python, it is common practice to create a designated virtual 

environment per project or per version of the model. These virtual environment 

constitute a.o. the python version and the versions of all installed packages. The 

creation and preservation of python environments enhance the reproducibility by 

ensuring execution of the code on similar software settings. The operation system 

is however not included in the virtual environment.

• Docker file, the operation system (Linux, Windows 2000) on which is directly 

related to whether certain algorithms can be executed. To increase reproducibility, 

a docker file, “a virtual operating system often containing a virtual environment” can 

be created and shared.
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Inherent randomness in Hardware 

Uses stream multiprocessing units 

which performs asynchronous 

computation which results in different 

runs. 

Uses Intra-Ops and Inter-ops 

parallelism on CPU, which can result 

in different results. By using floating 

points in solving the result differs.

Time

GPU CPU

Complex computations require Giga or even Tetra 

floating point operations. To decrease the timeframe 

and increase efficiency the processes are run in 

parallel on multiple central processing units and/or 

graphics processing units. 

There is inherent randomness and therefore ir-

reproducibility in hardware selection as well. Using 

different hardware types may affect the results.
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Next steps towards trustworthy AI
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Time

Horizon 1: Reproducibility 

handbook
Extend framework on guidelines for 

Reproducibility

Horizon 2: All AI principles 

handbook
Extend to 7 Trustworthy AI 

principles.  

Horizon 3: market ready 

tool
Tools for developers 

Horizon 2

• Fill in AI lifecycle components for the other Trustworthy AI 

principles (explainability, transparency, privacy, bias)

• Link to market needs

• First version of tool

Horizon 1

• Fill in developer’s guidelines for every AI lifecycle component

• Link to market needs on reproducibility 

• Develop tool/handbook set-up

Horizon 3

• Market ready tool for developers

• Practical use cases 

• Cross links between AI life cycle 

components
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Trust in AI, trust in public processes 

OUR OBJECTIVE

To enable trustworthy use of AI by public authorities and support effective oversight.

The use of AI tooling can facilitate the design and application of efficient and socially aware policies by governmental bodies, but 

involves the risk of disregarding trustworthiness as a priority, thus risking losing the trust of society towards the government. Guidelines 

for Trustworthy AI have been proposed, but require practical understanding from developers of AI systems in order to be adequately 

implemented.
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S. Vethman

M. Molhoek 
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