
1 | SlideSalad.com | 2020

Trust in AI, trust in public processes

OUR OBJECTIVE

To enable trustworthy use of AI by public authorities and support effective oversight.

The use of AI tooling can facilitate the design and application of efficient and socially aware policies by governmental bodies, but

involves the risk of disregarding trustworthiness as a priority, thus risking losing the trust of society towards the government. Guidelines

for Trustworthy AI have been proposed, but require practical understanding from developers of AI systems in order to be adequately

implemented.

S. Daniil

S. Vethman

M. Molhoek

2 | SlideSalad.com | 2020

Menu

AI life cycle and trustworthy

AI principles

• AI lifecycle

• Overview of important Trustworthy AI principles

• Selection of principle Reproducibility

Reproducibility
• Importance of Reproducibility

• Views on Reproducibility

• Required Randomness

Handbook

• Reproducibility framework mapped to the AI lifecycle

• Best practices for implementation

• Step 3: Data pre-processing

• Step 4: Build and test model

Other causes • Inherent randomness in hardware

Next steps • Vision of the future of AI Oversight Lab handbook

3 | SlideSalad.com | 2020

2) Data

collection

3) Data

preparation

5) Implementation

and deployment

6) Evaluation,

monitoring,

optimization

4) Build and

test model

1) Use case

definition7) Interpretation and

communication

AI life cycle components

The AI development

cycle passes through 7

stages. From project

scoping (1-2), design and

build phase (3-4) up to

continuous improvement

in production (5-6).

The 7th stage is

specifically added as

interpretation and

communication by

operators is society-

dependent and can

change over time.

4 | SlideSalad.com | 2020

The European ethics guidelines on

trustworthy AI state that it should be:

• Lawful – respecting all applicable

laws and regulations

• Ethical - respecting ethical

principles and values

• Robust – both from a technical

perspective while taking into

account its social environment

These guidelines translate into 7 key

requirements that AI systems should

meet , the principles of trustworthy AI.

Trustworthy AI principles:

T
ru

s
tw

o
rt

h
y
 p

ri
n

c
ip

le
s

Thrust-

worthy AI

Societal & environmental

well-being

Non-discrimination &

fairness

Transparency

Privacy & Data

Governance

Technical

Robustness & Safety

Human agency &

Oversight

Accountability

5 | SlideSalad.com | 2020

Begin with … Reproducibility

Reproducibility serves as the foundation for the Trustworthy principles Robustness and Accountability. Its relevance

is often underestimated and has not been thoroughly investigated in the context of AI, despite the crisis that it seems

to face.

Reproducibility of AI systems highly influences their performance and applicability in social context, since:

1. It is a prerequisite for technical robustness, and

2. It is crucial in rendering systems verifiable and thus fit for criticism and improvement.

6 | SlideSalad.com | 2020

The importance of reproducibility

In ML

1. Validity
Proving the correctness of the models

using the same processes and data.

3. Having a baseline
A reproducible baseline is required to

increase the reliability of your claim of

effectiveness or contribution to science.

2. Credibility
To be able to rely on the ML models and use

them intensively in our daily lives, we

need to be able to replicate and

explain them.

4. Pattern vs randomness
The improvements of models should be

based on identified patterns and not on

random ‘lucky shots’.

1

3

2

4

7 | SlideSalad.com | 2020

View 2

Reproducible outcomes for

verification of their validity.

View 1

Reproducible set-up for

replication.

What is reproducibility?

ReproducibilityReproducibility

Do you provide all

information for

someone else to

recreate your work?

Are your outcomes

robust to inherent

randomness of

Machine Learning?

Are your conclusions

contingent to your

exact implementation?

e.g., The fact

that a random

seed is set and

saved.

e.g., The

(in)dependency

of conclusions

on a specific

seed.

8 | SlideSalad.com | 2020

The reproducible scale

A

soft
Z

strict

Reproducibility

With various hardware,

no original code available,

different languages,

comparable AI methods,

the result is reproducible for

another person

Reproducibility

With the same hardware,

the original code,

the same language,

the same AI methods,

the result is reproducible for

another person.

There are various strictness levels of reproducibility for another person to get to the same

results. All variations can occur in between. What is the reproducibility if different

hardware is used? What is the effect of coding in R versus in Python? What is the result

of different library versions? How do random forest and gradient boost affect

reproducibility? Depending on the need of the user, the strictness of reproducibility can be

chosen.

9 | SlideSalad.com | 2020

Reproducibility: Complementing views

V
ie

w
 1

:
R

e
p

li
c

a
b

il
it

y

H
a

rd
 t

o

re
p

ro
d

u
c
e

Contingent Verified/Verifiable

E
a

s
y
 t

o

re
p

ro
d

u
c
e

View 2: Robustness/Stability/Reliable

REQUIRES VALIDATION IDEAL

NO GO REQUIRES TRUST

The use of the algorithm is accountable, as the settings and

outcomes can be repeated such that previous execution can be

corroborated.

However, the outcome may be dependent on the exact

implementation of the code, more validation is needed before one

considers the outcomes of the algorithm in process affecting society.

The algorithm is accountable as information for reproducibility for all

stages in the AI life cycles is appropriately stored.

The outcomes are verifiable or are verified with different models

and settings such that they can be interpreted with appropriate

level of confidence.

Outcomes of the algorithm cannot be reproduced by any (3rd) party.

Randomness in the algorithm or contingencies of the algorithm are

ignored in the interpretation of the outcomes. Hence, application of the

algorithm is in many real life processes ill-advised as the outcomes

do not have a robust interpretation nor are they accountable.

Outcomes of the algorithm cannot be reproduced by 3rd parties due

to omission of information on parameters and packages or privacy

aspects of even the characteristics of the data.

The outcomes are presented to be verified by multiple approaches

and classifiers, however due to the inability to exactly replicate

the outcomes, the developer need be trusted.

10 | SlideSalad.com | 2020

Importance of

randomness
Due to memory and time constraints randomness is used in

machine learning tasks.

To calculate the gradient in optimizing the Machine Learning task

often Stochastic Gradient Descent is used picking randomly a

part of the data to update its parameter iteratively. The noise that

is added during these updates can help in overcoming to get

stuck in a local minimum. The model may purposefully take

random steps to seek a better state.

Another example is the use of bagging (bootstrap aggregating)

which trains multiple models on overlapping randomly selected

subsets of data to increase accuracy and determine variance.

11 | SlideSalad.com | 2020

TNO’s focus in the landscape

Trustworthy AI guidelines and handbooks

Technical principles

of trustworthy AI

Juridical implications

for implementation
Organizational

implementations in processes

Technical OrganizationalJuridical

Break-down high level

concepts into technical

implementations of

trustworthy AI including

specific coding guidelines for

developers.

Management

Projects

TILT handbook

EU ethics guidelines

and frameworks WP1

Focus of TNO’s

handbook

V29 questionnaire

Existing

frameworks/tools

In
-d

e
p
th

H
ig

h
 l
e
v
e
l

12 | SlideSalad.com | 2020

AI life cycle

3) Data pre-processing: data cleansing, instances selection and partitioning, feature

tuning, representation transformation, feature extraction, feature selection, feature

construction, coupling of datasets and data labelling. Starts with raw data and ends up with

a ML ready dataset.

4) Build and Test model: model(s) selection, train and test split, testing and evaluating

the model on pre-defined success criteria.

5) Implementation and deployment: practical tests first in a sandbox environment,

model adjustment and applying in process, document restrictions and conditions for use.

2) Data collection: define data sources, protocols to safely collect and store data and

handle boundary conditions for collecting the data such as juridical implications.

6) Evaluation, monitoring optimization: define implementation strategy, evaluation on

defined goal/impact, actions to improve, continues monitoring and improvement.

1) Use case definition: setting the goal and the necessity of the project, define envisioned

impact, set the required assumptions for this goal, define end-user and define success

criteria.

7) Interpretation and communication: define user interpretation and expected actions,

evaluate universality of interpretation, monitor and act upon changes in actors/environment

acting on outcome, adjust process accordingly.

AI Life cycle

components

This step includes:

13 | SlideSalad.com | 2020

Framework Reproducibility

Life cycle components

Use case Data collection Data preparation
Build and test

model

Implementation

and deployment

Evaluation,

monitoring

optimization

Interpretation

and

communication

L
e

v
e

l

Definition

• Problem

statement

• Define goal and

scope

• Define intended

use

• Define data

sources

• Procedure and

boundaries of

data collection

• From raw data to

ML input

• Data cleaning

and

preprocessing

• Model selection

• Test procedures

including train test

split.

• Sandbox first

• Practical

application

• Restrictions and

conditions for use

• Evaluation with

defined goal

• Actions to

improve

• Continuous

monitoring

• User

interpretation and

expected actions.

Problems

sources

• What level and

type of

reproducibility is

necessary?

• Data size

• Computing power

requirements

• Dynamic data

• Feature

engineering

• Missing data

• Random sampling

• Parameter

choices

• Inherent

randomness

• Libraries

• Documentation by

user
• Metrics

• Visualization

• Non-universal

standardization

Solutions

• Use our

handbook to

select your needs

for your use case.

• Learning Curve

• Benchmark set

• Timestamps

• Recording of

preliminary data

sets.

• Documentation of

seed.

• Version control.

• Automated

testing

• Environment and

docker files.

• Automated

documentation.

• Checklist

• Dynamic

dashboard.

• Benchmark

• Examples

14 | SlideSalad.com | 2020

Build and test model:

Problems / Sources Solutions

Train-test split

• A random allocation of each data point or subject into two separate sets

is executed to split the data into a train or test set. This randomness may

influence the results of the algorithm.

• In python, this can e.g. be performed by a function of the package

scikit learn called: train_test_split.

• Setting and saving a seed to the train test split ensures that creation of the train

and test is repeatable.

• In python, the package scikit learn often allows the random state to be

given to the function.

• Cross validation is a more extensive version on a train-test split with multiple splits

per execution such that the influence of the randomness becomes smaller. This

increases the reproducibility w.r.t. View 2 of the results as it decreases the reliance

of a specific seed.

• Saving (and sharing) the index of the train and test splits (folds) increase the

reproducibility of results w.r.t. a train-test split further. In this way, you can exactly

recreate the splits irrespective of another random number generator and if

applicable others may test the findings on the exact same data splits.

Parameter

choice

• Unknown parameter choices, i.e. missing records of the settings used in an

algorithmic application, are a risk for reproducibility.

• Default parameters in packages are an even larger risk for the

reproducibility in terms of View 2. These are often unacknowledged and not

recorded, while default parameters differ between (versions of) packages and

programming languages.

• In python, the default number of splits in function

StratifiedShuffleSplit of package scikit learn has changed over

versions from 3 to 5. E.g. the solver for RandomForest in python

has a default depth of 100 branches while the package for R has a

default of 200 branches.

• Configuration files or scripts aid in the recording of the parameter settings applied

in testing the model. This is in contrast to parameters being set somewhere in the

collection of scripts that the eventual algorithm will consist of.

• It is common practice to use .yml files for saving parameter choices and

data paths for referencing all relevant directories.

• Version control is in turn able to save the configuration files and as such the

chosen parameters of each test. For this solution there is a distinction for the

developer (elaborated here) and the user (elaborated in the deployment phase).

15 | SlideSalad.com | 2020

Build and test model
Problems / Sources Solutions

Inherent

algorithmic

randomness

(non-

deterministic)

• There are many reasons for algorithms to be non-deterministic, see slide

19 for elaboration on inherent randomness in algorithms. Some specific

origins of randomness in machine learning algorithms are listed here:

• Many models optimize weights such that they capture the targeted

relation in the data. To acquire a starting point of the optimization,

weights are often randomly initialized.

• Multiple features of Neural Networks use random sampling, one of

them is the random selection in the application of dropout layers.

• For stochastic optimization to find (local) optima, random

sampling is used. An example for which this holds is stochastic

gradient descent.

• Randomness in random forest models. Each tree in the random

forest selects random features on which the model is trained.

• Test automation: To gain the benefits from algorithmic randomness and limit the

drawbacks, automatic testing of the algorithm for e.g. a range of seeds may be

performed.

• Do the results for different seeds fall into an acceptable range?

• Are the conclusions the same for all most seeds?

• Continuous integration: A step further in test automation is the use of continuous

integration of testing during the building and testing of the model. Before any

version of the model is approved or even any merge from branch to main is

requested, automated testing can be integrated. As such, version updates and

merge request are accompanied with a testing report.

• Alternative solver, same results? In many applications, there are many options

to solve the objective function, i.e. to optimize the classifier. To increase the

reproducibility of outcomes w.r.t. View 2, it is advised to see the outcomes for

multiple solvers with similar functionalities s.t. the dependency on one component

is limited.

• Statistical significance tests between results and benchmark take into account

random noise in data and if applied correctly contribute to robustness of a model’s

results.

Library
• The use of libraries simplifies the use of AI and machine learning but often

does not guarantee an 100% reproducibility. Libraries and the underlying

functions change each version, including their dependencies to other libraries.

• Environment, in python, it is common practice to create a designated virtual

environment per project or per version of the model. These virtual environment

constitute a.o. the python version and the versions of all installed packages. The

creation and preservation of python environments enhance the reproducibility by

ensuring execution of the code on similar software settings. The operation system

is however not included in the virtual environment.

• Docker file, the operation system (Linux, Windows 2000) on which is directly

related to whether certain algorithms can be executed. To increase reproducibility,

a docker file, “a virtual operating system often containing a virtual environment” can

be created and shared.

16 | SlideSalad.com | 2020

Inherent randomness in Hardware

Uses stream multiprocessing units

which performs asynchronous

computation which results in different

runs.

Uses Intra-Ops and Inter-ops

parallelism on CPU, which can result

in different results. By using floating

points in solving the result differs.

Time

GPU CPU

Complex computations require Giga or even Tetra

floating point operations. To decrease the timeframe

and increase efficiency the processes are run in

parallel on multiple central processing units and/or

graphics processing units.

There is inherent randomness and therefore ir-

reproducibility in hardware selection as well. Using

different hardware types may affect the results.

17 | SlideSalad.com | 2020

Next steps towards trustworthy AI
V

a
lu

e

Time

Horizon 1: Reproducibility

handbook
Extend framework on guidelines for

Reproducibility

Horizon 2: All AI principles

handbook
Extend to 7 Trustworthy AI

principles.

Horizon 3: market ready

tool
Tools for developers

Horizon 2

• Fill in AI lifecycle components for the other Trustworthy AI

principles (explainability, transparency, privacy, bias)

• Link to market needs

• First version of tool

Horizon 1

• Fill in developer’s guidelines for every AI lifecycle component

• Link to market needs on reproducibility

• Develop tool/handbook set-up

Horizon 3

• Market ready tool for developers

• Practical use cases

• Cross links between AI life cycle

components

18 | SlideSalad.com | 2020

Trust in AI, trust in public processes

OUR OBJECTIVE

To enable trustworthy use of AI by public authorities and support effective oversight.

The use of AI tooling can facilitate the design and application of efficient and socially aware policies by governmental bodies, but

involves the risk of disregarding trustworthiness as a priority, thus risking losing the trust of society towards the government. Guidelines

for Trustworthy AI have been proposed, but require practical understanding from developers of AI systems in order to be adequately

implemented.

S. Daniil

S. Vethman

M. Molhoek

19 | SlideSalad.com | 2020

References

[1] P. Hemant, “Reproducible machine learning,” Apr 2020.

[2] T. Allard, “10 top tips for reproducible machine learning,” Apr 2020.

[3] W. D. Heaven, “Ai is wrestling with a replication crisis,” Nov 2020

[4] “Reproducibility challenge @ neurips 2019.

[5] P. Sugimura and F. Hartl, “Building a reproducible machine learning pipeline,” 2018.

[6] P. Warden, “The machine learning reproducibility crisis,” Mar 2018.

[7] jennifervilla,“Reproducibilityinml:whyitmattersandhowtoachieveit,′′May 2018.

[8] J. Fjeld, N. Achten, H. Hilligoss, A. Nagy, and M. Srikumar, “Principled artificial intelligence:

Mapping consensus in ethical and rights-based approaches top principles for ai,” SSRN

Electronic Journal, 2020.

[9] B. Shneiderman, “Bridging the gap between ethics and practice,” ACM Trans-actions on

Interactive Intelligent Systems, vol. 10, no. 4, p. 1–31, 2020.

[10] J. Brownlee, “Embrace randomness in machine learning,” Aug 2019

[11] S. Mall, “Realizing reproducible machine learning - with tensorflow,” Dec 2019

[12] C. Shao, “Properly setting the random seed in ml experiments. not as simple as you might

imagine,” April 2019.

[13] C. Ayuya, “Reproducibility to improve machine learning,” January 2021.

[14] EU, “Ethics guidelines for trustworthy ai,” April 2019.

[15] N. Koleva, “Ai and data science lifecycle: Key steps and considerations,” May2020.

[16] Bart van der Sloot, Esther Keymolen, Merel Noorman, Yvette Wagensveld(Tilburg

University), College voor de rechten van de Mens, Hilde Weerts (TU E) Bram Visser (VU

Brussel) “Handreiking non-discriminatie by design,” 2021

[17] Interviews with NFI, VORtech, UvA, Leiden University

